活塞、活塞环
活塞顶面与汽缸头之间形成燃烧室,因此活塞必须承受来自引擎燃烧后产生的热和爆发力。油气燃烧所产生的热由活塞的顶部所吸收,并传至汽缸壁,而燃烧后气体膨胀所产生的力量也必须经由活塞来吸收,活塞会把燃烧气体压力及惯性力经由连杆传到曲轴上,利用连杆的作用将活塞的线性往复运动转换曲轴的旋转运动。在转换的过程中除了在上死点与下死点之外,活塞会对对汽缸滑移产生一个侧推力。 活塞环是曲轴箱和汽缸间的屏障。以机能来分,活塞环分为气环和油环两种,普通引擎每个活塞各有1~2个气环及油环。活塞环能维持汽缸内的气密性,使汽缸与曲轴箱隔绝开来,让燃烧室的气体压力不致流失,并能避免未完全燃烧的油气对曲轴箱内的机油造成污染及劣化。它能经由与汽缸壁的接触把活塞所受的热传至汽缸壁、水套,更重要的是它能防止过多的机油进入燃烧室,并让机油均匀的涂满汽缸壁。 引擎运转时产生的热越多表示所爆发的力量也越大,这些热量也对高性能引擎造成问题。现代的活塞设计主要有铸造和锻造两种,而铸造又比锻造来得简单便宜,但却无法如锻造活塞承受较大的热度和压力。通常改装厂在设计锻造活塞时,都会同时利用改变活塞顶部的形状来达到提高压缩比的目的,但问题是选择锻造活塞时多少的压缩比才是适当的。以汽油引擎来说,压缩比超过12.5:1时燃烧效率就不容易再提升。 利用活塞顶部的形状改变来提高压缩比时,随著压缩比的提高会使汽缸顶部燃烧室的空间变小,活塞顶部的锐角和凸出都可能导致爆震的发生。对高压缩比活塞来说,由于必须保留汽门做动所需的空间,因此会在活塞顶部切出汽门边缘形状的凹槽,如果没有这个凹槽,当活塞到达上死点时可能就会打到汽门,因此改装了高压缩比活塞后对汽门动作精确度的要求就必须非常严格。这凹槽的大小也必须配合凸轮轴及汽门摇臂的改装而改变。 不锈钢及特殊合金的活塞环已广泛应用在赛车及改装套件市场,这些特殊设计的合金活塞环可以在活塞往上行时释放压力,但在往下爆发行程时却能保持密闭的状态以维持压力,这种活塞环虽然贵但是却能有效的提高引擎效率。 由于活塞与活塞环都必须在高温、高压、高速及临界润滑的状态下工作,因此长久以来改装厂都为了提供最佳设计而努力,但引擎的性能是所有机件整合的结果,因此选择活塞套件时必须考量凸轮轴的正时角度、供由系统的配合才能找出最佳搭配组合。
活塞连杆
活塞连杆最基本的功能是连结活塞和曲轴,把直线的活塞运动转换成曲轴的旋转运动。在引擎转时连杆会承受油气燃烧产生的爆发力,这个爆发力会使连杆有扭曲的趋势,连杆也是所有引擎组件中承受负荷最大的组件。 由于连杆是把活塞的直线运动转换成曲轴的旋转运动,因此在活塞上下运转时连杆会不断的加速及减速,尤其在活塞抵达上死点时连杆的动方向会由往上突然减速至停止,并立刻改变运动方向,这是最容易造成连杆损害的。在爆发行程时,燃烧产生的高压气体可变成连杆运动的缓冲,插销、波斯(Bolts)所承受的负荷也会减轻。但是在排气行程的时候活塞、活塞环、插销及连杆本身的部份重量所造成的惯性力都会加诸在插销及波斯之上,如果这时连杆出了问题那下场就是你的引擎要进厂大修了。 现在的赛车引擎大多使用锻造的合金连杆,连杆的品质关系著引擎的可靠度,但是却无法以肉眼检视连杆的品质或瑕疵,必须以特殊的非破坏检验或X光做检测,这是选购及改装连杆时最大隐忧。连杆各项尺寸精密度的要求会随著压缩比及运转转速的提高而提高,即使仅是千分之几吋的尺寸误差在高转速时都会造成活塞间隙明显的变化。如果用了强度不足的铝合金连杆,在高转速时由于惯性作用会使连杆长度变长,造成引擎的损害或是压缩比的增加。 在活塞连杆的组件中对于尺寸要求最严格的当属连杆轴承(也就是俗称的波斯),这也是最可能导致连杆损害的组件。所以对赛车或高性能引擎来说,应该尽可能的使用最高品质的轴承,以确保引擎的可靠度。
[上一页] [1][2][3]
[下一页]
![](/images/art_but.gif)
![](/images/b12-1.gif)
![](/images/b12-31.gif) |